Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.06.23286837

ABSTRACT

Background: Polymerase chain reaction (PCR) cycle threshold (Ct) values can be used to estimate the viral burden of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) and predict population-level epidemic trends. We investigated the use of machine learning (ML) and epidemic transmission modeling based on Ct value distribution for SARS-CoV-2 incidence prediction during an Omicron-predominant period. Methods: Using simulated data, we developed a ML model to predict the reproductive number based on Ct value distribution, and validated it on out-of-sample province-level data. We also developed an epidemiological model and fitted it to province-level data to accurately predict incidence. Results: Based on simulated data, the ML model predicted the reproductive number with highest performance on out-of-sample province-level data. The epidemiological model was validated on outbreak data, and fitted to province-level data, and accurately predicted incidence. Conclusions: These modeling approaches can complement traditional surveillance, especially when diagnostic testing practices change over time. The models can be tailored to different epidemiological settings and used in real time to guide public health interventions.


Subject(s)
Learning Disabilities , Severe Acute Respiratory Syndrome
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.09.22279751

ABSTRACT

BackgroundWe chronicle SARS-CoV-2 sero-prevalence through eight cross-sectional sero-surveys (snapshots) in the Lower Mainland (Greater Vancouver and Fraser Valley), British Columbia, Canada from March 2020 to August 2022. MethodsAnonymized-residual sera were obtained from children and adults attending an outpatient laboratory network. Sera were tested with at least three immuno-assays per snapshot to detect spike (S1) and/or nucleocapsid protein (NP) antibodies. Sero-prevalence was defined by dual-assay positivity, including any or infection-induced, the latter requiring S1+NP antibody detection from January 2021 owing to vaccine availability. Infection-induced estimates were used to assess the extent to which surveillance case reports under-estimated infections. ResultsSero-prevalence was [≤]1% by the 3rd snapshot in September 2020 and <5% by January 2021 (4th). Following vaccine roll-out, sero-prevalence increased to >55% by May/June 2021 (5th), [~]80% by September/October 2021 (6th), and >95% by March 2022 (7th). In all age groups, infection-induced sero-prevalence remained <15% through September/October 2021, increasing through subsequent Omicron waves to [~]40% by March 2022 (7th) and [~]60% by July/August 2022 (8th). By August 2022, at least 70-80% of children [≤]19 years, 60-70% of adults 20-59 years, but [~]40% of adults [≥]60 years had been infected. Surveillance case reports under-estimated infections by 12-fold between the 6th-7th and 92-fold between the 7th-8th snapshots. InterpretationBy August 2022, most children and adults had acquired SARS-CoV-2 vaccine and infection exposures, resulting in more robust hybrid immunity. Conversely the elderly, still at greatest risk of severe outcomes, remain largely-dependent on vaccine-induced protection alone, and should be prioritized for additional doses.

3.
Front Public Health ; 10: 883066, 2022.
Article in English | MEDLINE | ID: covidwho-1862696

ABSTRACT

The COVID-19 pandemic has caused more than 448 million cases and 6 million deaths worldwide to date. Omicron is now the dominant SARS-CoV-2 variant, making up more than 90% of cases in countries reporting sequencing data. As the pandemic continues into its third year, continued testing is a strategic and necessary tool for transitioning to an endemic state of COVID-19. Here, we address three critical topics pertaining to the transition from pandemic to endemic: defining the endemic state for COVID-19, highlighting the role of SARS-CoV-2 testing as endemicity is approached, and recommending parameters for SARS-CoV-2 testing once endemicity is reached. We argue for an approach that capitalizes on the current public health momentum to increase capacity for PCR-based testing and whole genome sequencing to monitor emerging infectious diseases. Strategic development and utilization of testing, including viral panels in addition to vaccination, can keep SARS-CoV-2 in a manageable endemic state and build a framework of preparedness for the next pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2/genetics
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.13.22273825

ABSTRACT

ABSTRACT Background A major goal of COVID-19 vaccination is to prevent severe outcomes (hospitalizations and deaths). We estimated the effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against severe outcomes in four Canadian provinces between December 2020 and September 2021. Methods We conducted this multiprovincial retrospective test-negative study among community-dwelling adults aged ≥18 years in Ontario, Quebec, British Columbia, and Manitoba using linked provincial databases and a common study protocol. Multivariable logistic regression was used to estimate province-specific vaccine effectiveness against COVID-19 hospitalization and/or death. Estimates were pooled using random effects models. Results We included 2,508,296 tested subjects, with 31,776 COVID-19 hospitalizations and 5,842 deaths. Vaccine effectiveness was 83% after a first dose, and 98% after a second dose, against both hospitalization and death (separately). Against severe outcomes (hospitalization or death), effectiveness was 87% (95%CI: 71%–94%) ≥84 days after a first dose of mRNA vaccine, increasing to 98% (95%CI: 96%–99%) ≥112 days after a second dose. Vaccine effectiveness against severe outcomes for ChAdOx1 was 88% (95%CI: 75%–94%) ≥56 days after a first dose, increasing to 97% (95%CI: 91%–99%) ≥56 days after a second dose. Lower one-dose effectiveness was observed for adults aged ≥80 years and those with comorbidities, but effectiveness became comparable after a second dose. Two doses of vaccines provided very high protection for both homologous and heterologous schedules, and against Alpha, Gamma, and Delta variants. Conclusions Two doses of mRNA or ChAdOx1 vaccines provide excellent protection against severe outcomes of hospitalization and death.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.26.21265397

ABSTRACT

Background The Canadian COVID-19 immunization strategy deferred second doses and allowed mixed schedules. We compared two-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in two of Canada's larger provinces. Methods Two-dose VE against infections and hospitalizations due to SARS-CoV-2, including variants of concern, was assessed between May 30 and October 2, 2021 using test-negative designs separately conducted among community-dwelling adults [≥]18-years-old in British Columbia (BC) and Quebec, Canada. Findings In both provinces, two doses of homologous or heterologous SARS-CoV-2 vaccines were associated with ~95% reduction in the risk of hospitalization. VE exceeded 90% against SARS-CoV-2 infection when at least one dose was an mRNA vaccine, but was lower at ~70% when both doses were ChAdOx1. Estimates were similar by age group (including adults [≥]70-years-old) and for Delta-variant outcomes. VE was significantly higher against both infection and hospitalization with longer 7-8-week vs. manufacturer-specified 3-4-week interval between doses. Two-dose mRNA VE was maintained against hospitalization for the 5-7-month monitoring period and while showing some decline against infection, remained [≥]80%. Interpretation Two doses of mRNA and/or ChAdOx1 vaccines gave excellent protection against hospitalization, with no sign of decline by 5-7 months post-vaccination. A 7-8-week interval between doses improved VE and may be optimal in most circumstances. Findings indicate prolonged two-dose protection and support the use of mixed schedules and longer intervals between doses, with global health, equity and access implications in the context of recent third-dose proposals.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.16.464647

ABSTRACT

A large gap remains between sequencing a microbial community and characterizing all of the organisms inside of it. Here we develop a novel method to taxonomically bin metagenomic assemblies through alignment of contigs against a reference database. We show that this workflow, BugSplit, bins metagenome-assembled contigs to species with a 33% absolute improvement in F1-score when compared to alternative tools. We perform nanopore mNGS on patients with COVID-19, and using a reference database predating COVID-19, demonstrate that BugSplit's taxonomic binning enables sensitive and specific detection of a novel coronavirus not possible with other approaches. When applied to nanopore mNGS data from cases of Klebsiella pneumoniae bacteremia and Neisseria gonorrhoeae infection, BugSplit's taxonomic binning accurately separates pathogen sequences from those of the host and microbiota, and unlocks the possibility of sequence typing, in silico serotyping, and antimicrobial resistance prediction of each organism within a sample. BugSplit is available at https://bugseq.com/academic.


Subject(s)
COVID-19 , Klebsiella Infections
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.20.21263875

ABSTRACT

IntroductionIn randomized controlled trials, single-dose efficacy against SARS-CoV-2 illness exceeded 90% for mRNA vaccines (BNT162b2 and mRNA-1273), and 75% for ChAdOx1. In British Columbia (BC), Canada second doses were deferred up to 16 weeks and ChAdOx1 was only initially recommended for adults 55 years of age and older. We compared single-dose vaccine effectiveness (VE) during the spring 2021 wave in BC when Alpha and Gamma variants of concern (VOC) predominated. MethodsVE was estimated against infection and hospitalization by test-negative design: cases were RT-PCR test-positive for SARS-CoV-2 and controls were test-negative. Adults 50-69 years old with specimen collection between April 4 and May 22 (weeks 14-20) were included. Variant-specific VE was estimated between weeks 17-20 when genetic characterization of all case viruses was performed, primarily through whole genome sequencing. ResultsVE analyses included 7,116 (10%) cases and 60,958 controls. Three-quarters of vaccinated participants received mRNA vaccine (60% BNT162b2, 15% mRNA-1273) and 25% received ChAdOx1. Half of genetically characterized viruses were Alpha, with 38% Gamma, 4% Delta and 8% non-VOCs. Single-dose VE against any infection was 75% (95%CI: 72-78) for BNT162b2, 82% (95%CI: 76-87) for mRNA-1273 and 61% (95%CI: 54-66) for ChAdOx1. VE against hospitalization was 83% (95%CI: 76-89), 85% (95%CI: 63-94) and 96% (95%CI: 86-99), respectively. VE against Alpha vs. Gamma infections did not differ among mRNA (78%;95%CI: 73-82 and 80%;95%CI: 74-85) or ChAdOx1 (66%;95%CI: 57-74 and 60%;95%CI: 48-69) recipients. ConclusionsA single dose of mRNA vaccine reduced the SARS-CoV-2 infection risk by at least 75%, including infections due to early VOC. Although effectiveness of a single dose of ChAdOx1 was lower at 60% against infection, just one dose of any vaccine reduced the hospitalization risk by more than 80%. In the context of constrained vaccine supplies, these findings have implications for global vaccine deployment to reduce the overall burden of infections and hospitalizations due to SARS-CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.04.21262414

ABSTRACT

SARS-CoV-2 serosurveys can estimate cumulative incidence for monitoring epidemics but require characterization of employed serological assays performance to inform testing algorithm development and interpretation of results. We conducted a multi-laboratory evaluation of 21 commercial high-throughput SARS-CoV-2 serological assays using blinded panels of 1,000 highly-characterized blood-donor specimens. Assays demonstrated a range of sensitivities (96%-63%), specificities (99%-96%) and precision (IIC 0.55-0.99). Durability of antibody detection in longitudinal samples was dependent on assay format and immunoglobulin target, with anti-spike, direct, or total Ig assays demonstrating more stable, or increasing reactivity over time than anti-nucleocapsid, indirect, or IgG assays. Assays with high sensitivity, specificity and durable antibody detection are ideal for serosurveillance. Less sensitive assays demonstrating waning reactivity are appropriate for other applications, including characterizing antibody responses after infection and vaccination, and detection of anamnestic boosting by reinfections and vaccine breakthrough infections. Assay performance must be evaluated in the context of the intended use.


Subject(s)
Breakthrough Pain
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.26.21262697

ABSTRACT

Background This study identified factors associated with hospital admission among people with laboratory-diagnosed COVID-19 cases in British Columbia. Methods This study was performed using the BC COVID-19 Cohort, which integrates data on all COVID-19 cases, hospitalizations, medical visits, emergency room visits, prescription drugs, chronic conditions and deaths. The analysis included all laboratory-diagnosed COVID-19 cases in British Columbia as of January 15 th , 2021. We evaluated factors associated with hospital admission using multivariable Poisson regression analysis with robust error variance. Findings From 56,874 COVID-19 cases included in the analyses, 2,298 were hospitalized. Models showed significant association of the following factors with increased hospitalization risk: male sex (adjusted risk ratio (aRR)=1.27; 95%CI=1.17-1.37), older age (p-trend <0.0001 across age groups with a graded increase in hospitalization risk with increasing age [aRR 30-39 years=3.06; 95%CI=2.32-4.03, to aRR 80+years=43.68; 95%CI=33.41-57.10 compared to 20-29 years-old]), asthma (aRR=1.15; 95%CI=1.04-1.26), cancer (aRR=1.19; 95%CI=1.09-1.29), chronic kidney disease (aRR=1.32; 95%CI=1.19-1.47), diabetes (treated without insulin aRR=1.13; 95%CI=1.03-1.25, requiring insulin aRR=5.05; 95%CI=4.43-5.76), hypertension (aRR=1.19; 95%CI=1.08-1.31), injection drug use (aRR=2.51; 95%CI=2.14-2.95), intellectual and developmental disabilities (aRR=1.67; 95%CI=1.05-2.66), problematic alcohol use (aRR=1.63; 95%CI=1.43-1.85), immunosuppression (aRR=1.29; 95%CI=1.09-1.53), and schizophrenia and psychotic disorders (aRR=1.49; 95%CI=1.23-1.82). Among women of reproductive age, in addition to age and comorbidities, pregnancy (aRR=2.69; 95%CI=1.42-5.07) was associated with increased risk of hospital admission. Interpretation Older age, male sex, substance use, intellectual and developmental disability, chronic comorbidities, and pregnancy increase the risk of COVID-19-related hospitalization. Funding BC Centre for Disease Control, Canadian Institutes of Health Research. Research in context Evidence before this study Factors such as older age, social inequities and chronic health conditions have been associated to severe COVID-19 illness. Most of the evidence comes from studies that don’t include all COVID-19 diagnoses in a jurisdiction), focusing on in-hospital mortality. In addition, mental illness and substance use were not evaluated in these studies. This study assessed factors associated with hospital admission among people with laboratory-diagnosed COVID-19 cases in British Columbia. Added value of this study In this population-based cohort study that included 56,874 laboratory-confirmed COVID-19 cases, older age, male sex, injection drug use, problematic alcohol use, intellectual and developmental disability, schizophrenia and psychotic disorders, chronic comorbidities and pregnancy were associated with the risk of hospitalization. Insulin-dependent diabetes was associated with higher risk of hospitalization, especially in the subpopulation younger than 40 years. To the best of our knowledge this is the first study reporting this finding, (insulin use and increased risk of COVID-19-related death has been described previously). Implications of all the available evidence Prioritization of vaccination in population groups with the above mentioned risk factors could reduce COVID-19 serious outcomes. The findings indicate the presence of the syndemic of substance use, mental illness and COVID-19, which deserve special public health considerations.


Subject(s)
Schizophrenia , Diabetes Mellitus, Type 1 , Neoplasms , Kidney Diseases , Chronic Disease , Psychotic Disorders , COVID-19 , Developmental Disabilities
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.13.21261922

ABSTRACT

The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies to detect and characterize pathogens from clinical specimens. The MinION sequencing device allows for rapid, cost-effective, high-throughput sequencing; useful features for translation to clinical laboratory settings. Metagenomic Next-Generation Sequencing (mNGS) approaches provide the opportunity to examine the entire genomic material of a sample; allowing for detection of emerging and clinically relevant pathogens that may be missed in targeted assays. Here we present a pilot study on the performance of Sequence-Independent Single Primer Amplification (SISPA) to amplify RNA randomly for the detection and characterization of SARS-CoV-2. We designed a classifier that corrects for barcode crosstalk between specimens. Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-qPCR cycle threshold value less than 30. We assembled 10 complete (>95% coverage at 20x depth), and one near-complete (>80% coverage at 20x depth) genomes from 20 specimens that were classified as positive by mNGS. We characterized these genomes through phylogenetic analysis and found that 10/11 specimens from British Columbia had a closest relative to another British Columbian specimen. Of five samples that we had both assembled genomes, as well as Variant of Concern (VOC) PCR results, we found 100% concordance between these results. Additionally, our assay was able to distinguish between the Alpha and Gamma variants, which was not possible with our VOC PCR technique. This study supports future work examining the broader feasibility of SISPA as a diagnostic strategy for the detection and characterization of viral pathogens.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.07.21258332

ABSTRACT

Introduction: Randomized-controlled trials of mRNA vaccine protection against SARS-CoV-2 included relatively few elderly participants. We assess singe-dose mRNA vaccine effectiveness (VE) in adults [≥]70-years-old in British Columbia (BC), Canada where the second dose was deferred by up to 16 weeks and where a spring 2021 wave uniquely included co-dominant circulation of B.1.1.7 and P.1 variants of concern (VOC). Methods: Analyses included community-dwelling adults [≥]70-years-old with specimen collection between April 4 (epidemiological week 14) and May 1 (week 17). Adjusted VE was estimated by test-negative design through provincial laboratory and immunization data linkage. Cases were RT-PCR test-positive for SARS-CoV-2 and controls were test-negative. Vaccine status was defined by receipt of a single-dose [≥]21 days before specimen collection, but a range of intervals was assessed. In variant-specific analyses, test-positive cases were restricted to those genetically-characterized as B.1.1.7, P.1 or non-VOC. Results: VE analyses included 16,993 specimens: 1,226 (7.2%) test-positive cases and 15,767 test-negative controls. Of 1,131 (92%) viruses genetically categorized, 509 (45%), 314 (28%) and 276 (24%) were B.1.1.7, P.1 and non-VOC lineages, respectively. VE was negligible at 14% (95% CI 0-26) during the period 0-13 days post-vaccination but increased from 43% (95% CI 30-53) at 14-20 days to 75% (95% CI 63-83) at 35-41 days post-vaccination. VE at [≥]21 days was 65% (95% CI 58-71) overall: 72% (95% CI 58-81), 67% (95% CI 57-75) and 61% (95% CI 45-72) for non-VOC, B.1.1.7 and P.1, respectively. Conclusions: A single dose of mRNA vaccine reduced the risk of SARS-CoV-2 in adults [≥]70-years-old by about two-thirds, with protection only minimally reduced against B.1.1.7 and P.1 variants. Substantial single-dose protection in older adults reinforces the option to defer the second dose when vaccine supply is scarce and broader first-dose coverage is needed.

12.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-366992.v1

ABSTRACT

The true severity of infection due to COVID-19 is under-represented because it is based on only those who are tested. Although nucleic acid amplifications tests (NAAT) are the gold standard for COVID-19 diagnostic testing, serological assays provide better population-level SARS-CoV-2 prevalence estimates. Implementing large sero-surveys present several logistical challenges within Canada due its unique geography including rural and remote communities. Dried blood spot (DBS) sampling is a practical solution but comparative performance data on SARS-CoV-2 serological tests using DBS is currently lacking. Here we present test performance data from a well-characterized SARS-CoV-2 DBS panel sent to laboratories across Canada representing 10 commercial and 2 in-house developed tests for SARS-CoV-2 antibodies. Three commercial assays identified all positive and negative DBS correctly corresponding to a sensitivity, specificity, positive predictive value, and negative predictive value of 100% (95% CI = 72.2, 100). Two in-house assays also performed equally well. In contrast, several commercial assays could not achieve a sensitivity greater than 40% or a negative predictive value greater than 60%. Our findings represent the foundation for future validation studies on DBS specimens that will play a central role in strengthening Canada’s public health policy in response to COVID-19.


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21251364

ABSTRACT

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.23.20237206

ABSTRACT

BackgroundAngiotensin converting enzyme 2 (ACE2) serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 expression in people tested for COVID-19 and the relationship between ACE2 expression and SARS-CoV-2 viral RNA load, while adjusting for expression of the complementary protease, Transmembrane serine protease 2 (TMPRSS2), soluble ACE2, age, and biological sex. MethodsA cross-sectional study of n=424 participants aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Participants who tested negative or positive for COVID-19 were matched by age and biological sex. Viral and host gene expression was measured by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. FindingsAnalysis shows no association between age and nasopharyngeal ACE2 expression in those who tested negative for COVID-19 (P=0{middle dot}092). Mean expression of transmembrane (P=1{middle dot}2e-4), soluble ACE2 (P<0{middle dot}0001) and TMPRSS2 (P<0{middle dot}0001) differed between COVID-19-negative and -positive groups. In bivariate analysis of COVID-19-positive participants, expression of transmembrane ACE2 positively correlated with SARS-CoV-2 RNA viral load (P<0{middle dot}0001), expression of soluble ACE2 negatively correlated (P<0{middle dot}0001), and no correlation was found with TMPRSS2 (P=0{middle dot}694). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 expression (B=0{middle dot}886, 95%CI:[0{middle dot}596 to 1{middle dot}18]), while expression of soluble ACE2 may protect against high viral RNA load in the upper respiratory tract (B= -0{middle dot}0990, 95%CI:[-0{middle dot}176 to -0{middle dot}0224]). InterpretationNasopharyngeal ACE2 expression plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transmembrane ACE2 positively correlates, while soluble ACE2 negatively correlates with viral RNA load after adjusting for age, biological sex and expression of TMPRSS2. FundingThis project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.


Subject(s)
COVID-19
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20153148

ABSTRACT

Background: The province of British Columbia (BC) has been recognized for successful SARS-CoV-2 control, with surveillance data showing amongst the lowest case and death rates in Canada. We estimate sero-prevalence for two periods flanking the start (March) and end (May) of first-wave mitigation measures in BC. Methods: Serial cross-sectional sampling was conducted using anonymized residual sera obtained from an outpatient laboratory network, including children and adults in the Greater Vancouver Area (population ~3 million) where community attack rates were expected to be highest. Screening used two chemiluminescent immuno-assays for spike (S1) and nucleocapsid antibodies. Samples sero-positive on either screening assay were assessed by a third assay targeting the S1 receptor binding domain plus a neutralization assay. Age-standardized sero-prevalence estimates were based on dual-assay positivity. The May sero-prevalence estimate was extrapolated to the source population to assess surveillance under-ascertainment, quantified as the ratio of estimated infections versus reported cases. Results: Serum collection dates spanned March 5-13 and May 15-27, 2020. In March, two of 869 specimens were dual-assay positive, with age-standardized sero-prevalence of 0.28% (95%CI=0.03-0.95). Neither specimen had detectable neutralizing antibodies. In May, four of 885 specimens were dual-assay positive, with age-standardized sero-prevalence of 0.55% (95%CI=0.15-1.37%). All four specimens had detectable neutralizing antibodies. We estimate ~8 times more infections than reported cases. Conclusions: Less than 1% of British Columbians had been infected with SARS-CoV-2 when first-wave mitigation measures were relaxed in May 2020. Our findings indicate successful suppression of community transmission in BC, but also substantial residual susceptibility. Further sero-survey snapshots are planned as the pandemic unfolds.

SELECTION OF CITATIONS
SEARCH DETAIL